A longitudinaly cooled helix

In this test case we will simulate a longitudinaly cooled helix.

1. Running the case

mpirun -np 32 feelpp_hfm_thermoelectric --config-file HL-31_H1_boomeramg.cfg

To run this example on MSO4SC portal see this section.

If you want to change the number of procs used, you need to create a proper partition mesh. See the next sections for a detailed guide.

1.1. Convert the mesh

The mesh may be converted into an another format using gmsh compiled with proper med support

gmsh -3 -bin HL-31_H1.med -o HL-31_H1.msh

The resulting mesh is in mm

1.2. Partitionning the mesh:

feelpp_mesh_partitioner --gmsh.scale=0.001 --ifile HL-31_H1.msh [--ofile HL-31_H1_p32] --part 32

The option --gmsh.scale=0.001 enables to force the use of meter for the partitionned mesh.

2. Data files

The data files may be retreived from Data Catalogue. See the dataset A test helix in Lncmi collection.

The gzipped archive tarball HL-31_H1-v0.105.tgz contains all the files needed.

2.1. Mesh file

  • HL-31_H1.med

  • HL-31_H1.msh

  • HL-31_H1_p32.json, HL-31_H1_p32.h5

2.2. Simulation cfg file

  • HL-31_H1_boomeramg.cfg

2.3. Model files

  • HL-31_H1_thermoelec.json

2.4. Materials files

Materials are stored in a dedicated repository Materials

3. Input parameters

Name Description Value Unit

\(V_D\)

electrical potential

9

\(V\)

4. Outputs

Name Description Value Unit

\(min(T)\)

min of Temperature Field

293.32

\(K\)

\(max(T)\)

max of Temperature Field

400.781

\(K\)